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Abstract  8 

Integrated landscape management has emerged in recent years as a methodology to integrate the 9 

environmental impacts of various agricultural practices along with yield and profitability in a 10 

variety of cropping systems. In this study, the Landscape Environmental Assessment Framework 11 

(LEAF), a decision support toolset for use in integrated landscape management and developed at 12 

Idaho National Laboratory, was used to evaluate the profitability of grain producing subfields, to 13 

determine the efficacy of sustainably harvesting residual biomass after grain harvest, and to 14 

determine the efficacy of integrating bioenergy crops into grain-producing landscapes to enhance 15 

farmer profitability. Three bioenergy crops, sorghum, switchgrass, and miscanthus, were 16 

integrated into non-profitable subfields in four U.S. counties. The manuscript describes in detail 17 

the material and methods used to define crop rotations, land management units and practices, 18 

subfield units and productivity, grain profitability, sustainability criteria, energy crop integration, 19 

and feedstock cost estimation. With the integration of bioenergy crops, the overall annual 20 

biomass production rates in the four counties could be increased by factors ranging from 0.8 to 21 

21, depending on the energy crop and county, over the annual residue biomass production rates. 22 

By modeling the harvesting of residual biomass and energy crops using geo-referenced, 23 

precision harvesting equipment and optimal harvesting paths on individual sub-fields, the 24 

average logistics costs including harvesting of both residual biomass and energy crops were 25 

observed to fall well below US DOE’s 2017 goals for biomass feedstock price of US$84/ton or 26 

US$92.6/dry Mg. Miscanthus, grown in counties in Ohio and Kansas, provided the maximum 27 

potential, among the three energy crops considered, for increment in biomass production and 28 

also posed maximum threat to the grain production.  Considerable variability was observed in the 29 

harvesting and total costs because of the size, shape, and productivity of individual subfields. It 30 

was shown that variability in the harvesting costs could be used to down-select non-profitable 31 

farms with low harvesting costs and high residue and bioenergy crop yields and to reduce the 32 

negative impacts of bioenergy crop integration into croplands on grain production. The results of 33 

the assessment suggest that (1) the potential to produce biomass is considerably enhanced when 34 

non-profitable grain-producing subfields are replaced by bioenergy crops, (2) the subfield-scale 35 

integrated landscape assessment provides a defensible methodology to directly address 36 

individual farmer’s profitability, sustainability, and environmental stewardship.  37 

Keywords   38 

Landscape Environmental Assessment Framework, LEAF, biomass, energy crops, switchgrass, miscanthus, 39 
feedstock, herbaceous biomass, logistics cost, bioenergy  40 
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Introduction 41 

Research on increasing production of lignocellulosic biomass in the US gained momentum after the US Government 42 

passed the Energy Independence and Security Act in 2007, which set a requirement of 60.5 million m3 (16 billion 43 

gal) of cellulosic biofuel production by 2022 [1]. Bioenergy Technologies Office (BETO) of US Department of 44 

Energy’s Office of Energy Efficiency and Renewable Energy has since set an operational goal for the US bioenergy 45 

industry of 222 million Mg (245 million tons) of biomass/y by 2017 and a goal of 259 million Mg (285 million tons) 46 

of biomass/y by 2022 utilizing a diversity of biomass resources at a feedstock delivery cost of US$92.6/dry Mg 47 

(US$84/ton) or lower in 2014$ [2]. The bioenergy researchers are focusing on agricultural-herbaceous and forestry-48 

woody sources to rapidly build up the lignocellulosic feedstock capacity. Low-value sawmill discards and wood 49 

chips from the forest industry represent the woody biomass. Low-value waste products or post-grain harvest 50 

residues from agriculture such as corn stover and sugarcane bagasse represent the herbaceous biomass along with 51 

energy crops such as switch grass, miscanthus, and willow. Energy crops have been proposed as a means to 52 

supplement emerging supplies of agricultural residues to sustainably attain the BETO goals while also reducing land 53 

use requirements [3]. However, extensive research and analysis are required to avoid unintended consequences to 54 

the environment and to establish the economic advantages to biomass producers and the bioenergy market [4]. 55 

Excessive harvesting of plant residues results in the removal of vegetative protection over the soil substrate. Large 56 

fractions of soils are then exposed to wind and precipitation-driven erosive forces which remove both soil and 57 

chemical resources such as carbon and nutrients from agricultural lands, reducing the year-to-year sustainability of 58 

agriculture. Wind-driven emissions of carbon and volatilization of nutrients result in increased GHG loading of the 59 

atmosphere. Sediment and chemical losses to runoff result in increased loading of surface water bodies and 60 

excessive nutrient concentrations in the waters result in highly productive water systems leading to algal bloom and 61 

hypoxic water conditions killing valuable ecosystem components and reducing ecosystem services. These 62 

unintended consequences can easily offset benefits in terms of the amounts of residue feedstock produced and result 63 

in long-term adverse socioeconomic impacts. Recent research through modeling studies, however, have shown that 64 

it is possible to sustainably remove agricultural residue by limiting the removal of residues using soil and soil-65 

carbon erosion criteria [5-8]. Sustainability in this context refers to the year-to-year continuation of grain and row-66 

crop agriculture with minimal addition of soil carbon and nutrients each year.  67 

Energy crops such as energy sorghum, switchgrass, willow, sugarcane, energycane, napier grass, and miscanthus 68 

have emerged in recent years as alternative biomass to plant residues, with high yields even on marginal lands and 69 

high potential to meet BETO’s feedstock production goals [3, 9 - 15]. Most of these (except sorghum in the US) also 70 

have the advantage of being perennial species and some of them have multi-year harvest cycles. There are also other 71 

advantages of growing perennial bioenergy crops instead of row crops - reductions in greenhouse gas emissions and 72 

agricultural pollution per hectare [16-19]; increased biodiversity and ability to restore contaminated lands [20-22]; 73 

fossil carbon substitution and reduction in CO2 emissions [23]; provision of ecosystem services such as reduced 74 

nutrient runoff, reduced erosion, carbon sequestration, and wildlife habitat [15, 24-25]; ability to grow on marginal 75 

lands under different geographies and environments with high yields from low inputs [26, 27]; and providing high 76 
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water and nitrogen use efficiencies with cold-climate adaptation and less annual establishment requirements [15, 77 

26].   78 

Off-target nutrient runoff from fertilizer applications has been identified in recent years as a major anthropogenic 79 

contributor to aquatic, estuarine, and marine ecosystem nitrification, potentially leading to their over-enrichment; 80 

nuisance blooms of opportunistic bacteria, cyanobacteria, and algae; and hypoxia or depletion of dissolved oxygen 81 

[28-36]. Because of the ability to sequester carbon and soil and capture nutrients from runoffs off agricultural lands, 82 

bioenergy crops have been recommended as an effective means to improve surface water quality and ecosystem 83 

services as well as improve farmer’s capacity to generate water quality credits that can be bought by industry to 84 

offset their environmental permitting requirements [37-42]. 85 

Sustainable and responsible bioenergy production has therefore become a central theme to avoid adding additional 86 

environmental burden to future generations. BETO has the goal that at least one biofuel technology will be 87 

identified that reduces GHG emissions by 50% or more compared to petroleum fuels and meets targets for water 88 

use, wastewater and air emissions while getting the price below $3/gasoline gallon equivalent (GGE) [2]. BETO 89 

would also like to identify landscape design approaches of at least two bioenergy systems by 2022 that can improve 90 

land-use efficiency and maintain ecosystem and social benefits and evaluate environmental and socioeconomic 91 

indicators across the supply chain for three cellulosic and algal bioenergy systems to validate the environmental 92 

emission targets and socio economic benefits [2].  93 

Farmers are protected through federal crop insurance programs against losses on grain production. Many farmers 94 

grow row crops assuming a price upswing and buy crop insurance to minimize loss. However, programs like the 95 

Biomass Crop Assistance Program (BCAP) [43], provide incentives for growers to switch to new crops. Through 96 

participation in the BCAP program, crops are grown that could be used by biorefineries. The incentive of a ready 97 

market may lead to producers more willing to grow them. Another incentive for farmers to grow energy crops is the 98 

ability of these crops to consume less water and nutrients. In the Midwestern states, the water table in the Ogallala 99 

Aquifer has been steadily declining to the extent that the farmland prices on the fringes of the aquifer have dropped 100 

significantly in the past 10 years.  101 

Questions that are important to sustaining agriculture while ensuring the retention or enhancement of ecosystem 102 

services ([44, 45] are also pertinent to decisions on residue harvesting because amount of soil erosion and carbon 103 

and nutrient removal by wind and water are directly dependent on and in proportion to the amount of biomass 104 

harvested as residues. On the other hand, strategically switching to energy crops in select landscape locations could 105 

preserve nutrients, carbon, and soil within the landscape ([46, 39]. Several recent modeling studies at the subfield 106 

(subfield is a subsection of a farmer’s field or Common Land Unit, CLU, that is differentiable by soil type or other 107 

surface characteristics) and landscape levels have also shown that it is possible to sustainably remove agricultural 108 

residue ([5, 6, 8, 47, 48]. 109 

For the agriculture-based bioenergy production to even take-off, it is essential to establish long-term profitability of 110 

farmer and minimize the nutrient and carbon losses at the farmer level. Hence, the focus of this study is the 111 

profitability and environmental sustainability at the farmer level using a landscape approach to evaluate multiple 112 
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subfields of various sizes. Opportunities to harvest plant residue on grain or row crop fields in the US were 113 

investigated along with opportunities to grow energy crops on non-profitable fields.  114 

 115 

Materials and Methods 116 

Four counties in four U.S. states with over 90% of agriculture area devoted to corn production were randomly 117 

selected for analysis using available data from 2010 to 2014 to show how subfield profitability could be used as a 118 

driver to (1) encourage environmentally sustainable production of biomass for bioenergy and (2) enhance total 119 

biomass production with the introduction of energy crops on non-profitable subfields at a low cost to the 120 

farmer/grower. The methodology used the Landscape Environmental Assessment Framework (LEAF), originally 121 

developed at the Idaho National Laboratory [8], and built upon past efforts ([6, 47]) at sub-field resolution to explore 122 

opportunities for biomass production from grain residue and energy crops. Bonner et al. [6, 48] investigated the 123 

feasibility of growing energy crops on subfields in Hardin County, Iowa, extended the analysis to Gerro Gardo 124 

County in Iowa, and applied multi-criteria decision analysis to show that subfield productivity, profitability, and 125 

environmental performance can all be improved simultaneously by identifying management areas for switchgrass 126 

production and stover harvest. The analysis presented here focused on predominantly corn-producing counties in the 127 

four states; and, different energy crops were assumed to be grown in these counties according to prevailing climates 128 

and soil. The energy crops considered include sorghum, lowland switchgrass, and miscanthus. Sorghum is an annual 129 

energy crop, which produces large amounts of biomass in semi-arid environments with reduced susceptibility to 130 

abiotic stresses including drought [49]; hence, it was used as the preferred energy crop for Texas. Miscanthus and 131 

switchgrass are perennial, thin-stemmed herbaceous C4 plants that produce high dry matter yields and are suitable 132 

with many crop production systems [47, 50] and it was decided to use switchgrass in Tennessee and miscanthus in 133 

Kansas and Ohio. The methods developed for integrated landscape modeling were directly applicable to Tennessee 134 

and Ohio counties with little to no modification; for counties in Kansas and Texas, limitations in data quality, 135 

availability, and/or applicability required additional assumptions regarding landscape productivity, management 136 

boundaries, and profitability. Harvest of residual biomass was constrained by sustainability criteria to ensure year-137 

to-year availability of organic matter and soil for sustained multi-year production of grains and biomass. Production 138 

of residual biomass and energy crops involve additional logistics costs, to be estimated at CLU level (representing a 139 

farmer or grower), for harvesting, baling, preprocessing, handling, and transportation. This section is organized in 140 

accordance with the main components of the analysis, including: crop rotations, land management units and 141 

practices, subfield units and productivity, profitability, biomass availability, and environmental impacts. 142 

Crop Rotations 143 

Land cover was determined using the Cropland Data Layer (CDL) for each year from 2010 to 2014, creating a five-144 

year rotation for each field within the four counties. Table 1 lists the crops used to form rotations and the relative 145 

area of corn-producing land captured by the cover selections. Instances of less than 100% indicated that some other 146 

cover type (e.g., another field crop or non-crop cover) occurred on a corn-producing field within the 5-year span. 147 

Such fields are therefore not captured in downstream analyses. 148 
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Land Management Units & Practices 149 

Field boundaries based on the 2008 CLU data were successfully applied to each of the counties with the exception 150 

of Castro County, TX. A key component of the analysis methodology is assigning real-world crop rotations to actual 151 

management units. As noted in the previous section, crop rotations are determined from the CDL which is based on 152 

remotely sensed ground cover data. Rotations are then assigned to CLU boundaries on a majority-cover basis. In the 153 

case of Castro County, the CLU boundaries encompass numerous management units, as illustrated in Fig 1 (left), 154 

where six center pivots are classified by a single CLU. In this instance, the crop on each pivot, plus the cover in the 155 

pivot-corners, would be considered and a majority cover would be assigned to the CLU level. Not only would this 156 

be a simple misclassification, but would result in downstream inaccuracies in crop area calculations and thus crop 157 

yields. To overcome this challenge, the CDL data was used to create new management boundaries based on the 158 

shapes formed by contiguous pixels with matching crop cover. The resulting shapes resemble the reality of pivot 159 

irrigated fields more closely than the CLU boundaries (Fig. 1, right). 160 

Table 1 Crops used in forming five year rotations for each county and the relative area of corn producing 

fields captured. 

County Crops/Cover in Rotation 
% of Corn Acres 

Captured 

Castro, TX Corn, Winter Wheat, Cotton, Sorghum, Pasture 100% 

Dyer, TN Corn, Soybean, Winter Wheat, Cotton 90% 

Hancock, OH Corn, Soybean, Winter Wheat 96% 

Sheridan, KS Corn, Soybean, Winter Wheat, Sorghum, Fallow 94% 

  

The fields selected for analysis in each of the four counties are shown in Fig. 2. Management practices for each 161 

county were built from the base management templates within RUSLE2 ([51], part of LEAF) for all combinations of 162 

crop rotations achievable from Table 1. The NRCS Crop Management Zone (CMZ) [52], tillage intensity, and 163 

energy crop used for modeling each county is presented in Table 2. Management practices were modified based on 164 

verbal communication with NCRS district conservationists and university agronomic guidelines to resemble the 165 

most common management practiced within each county.  166 

Table 2 Management zones, tillage practices, and energy crops used for modeling management practices of each 167 
county. 168 

County 
Crop Management 

Zone 

Row Crop Tillage 

Practice 
Energy Crop 

Castro, TX 19 Reduced Till Sorghum 

Dyer, TN 63 Reduced Till Lowland Switchgrass 

Hancock, OH 16 Reduced Till Miscanthus 

Sheridan, KS 5 No Till Miscanthus 

 169 

Subfield Units and Productivity 170 
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SSURGO soil map unit boundaries were used to create subfield units for each county by intersecting the soil data 171 

with field boundaries. The productivity of these soil units within each subfield must be estimated for the crop type 172 

determined to be produced. Hancock County was the only instance where a soil-based yield estimate in bu/ac was 173 

available for corn, soybean, and wheat (Table 3). The final validation associated with estimating subfield 174 

productivity is a reliable estimate of county-level annual crop production. In most cases, the NASS production 175 

statistics satisfy this need, but in some instances there were no reported data for one or more years from 2010 to 176 

2014, or the data that were reported were of poor quality or misleading. Sheridan and Castro counties faced 177 

challenges in production data availability or quality, resulting in the implementation of additional specialized 178 

assumptions. 179 

The SSURGO predicted yields were normalized to the National Agricultural Statistics Service (NASS) annual 180 

production values for each crop and year. This is done by first calculating the county level estimated grain 181 

production across all soil types in a given year: 182 

 183 

𝐸𝑌𝑗𝑥 = ∑ 𝑎𝑖𝑗𝑥 ∙ SSURGO𝑖𝑥𝑖      (1) 184 

 185 

where EYjx is the estimated county level yield in year j for crop x, aijx is the area of a given soil map unit i in year j 186 

producing crop x and SSURGOix is the estimated yield for soil i and crop x. A correction factor can then be 187 

determined for each year and crop: 188 

 189 

𝐶𝐹𝑗𝑥 = (𝑁𝑌𝑗𝑥 − 𝐸𝑌𝑗𝑥)/𝑁𝑌𝑗𝑥      (2) 190 

 191 

where CFjx is the annual correction factor for year j and crop x and NYjx is the NASS reported county level corn 192 

grain production for year j and crop x. This technique maintained realistic county-level production of each crop, but 193 

distributed production across the Hancock County landscape in such a way that variation in subfield conditions were 194 

respected, resulting in non-uniform crop production within each field. For the remaining counties, a soil-based 195 

estimate of yield was not available and the National Commodity Crop Productivity Index (NCCPI) was evaluated as 196 

an alternative method for generating subfield yields and variability. To improve the index’s ability to provide 197 

reasonable subfield crop yields, the following transformation was developed: 198 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑁𝐶𝐶𝑃𝐼 = {

0.25 𝑓𝑜𝑟 𝑁𝐶𝐶𝑃𝐼 < 0.3265

[2 − √1
𝑁𝐶𝐶𝑃𝐼⁄ ]  𝑓𝑜𝑟 𝑁𝐶𝐶𝑃𝐼 ≥ 0.3265

   (3) 199 

The NCCPI score for each soil can then be used to generate a correction factor for estimating crop yields by 200 

substituting SSURGOix in equation 1 with an NCCPI score: 201 

 202 

 𝐸𝑌𝑗 = ∑ 𝑎𝑖𝑗 ∙ NCCPI𝑖𝑖      (4) 203 

 204 
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where NCCPIi is the index score for soil i and the subscript x drops from each variable because there is not a crop-205 

specific index score. Equation 2 was then adhered to, generating a correction factor that when multiplied by the soil 206 

specific index score returned a subfield crop yield.  207 

This method of subfield productivity failed in Castro County. Because the NCCPI was developed for dryland 208 

farming and Castro County was reliant on irrigation, many of the soils within study fields had NCCPI scores less 209 

than the 0.3265 requirement set in equation 3. When the transformation was applied, a large portion of fields were 210 

adjusted to a fixed rate of 0.25. In this case, the non-transformed NCCPI scores were used to create county level 211 

adjustment factors.  212 

Table 3 Source of subfield yield information for each county and subsequent processing. 213 

County 
Source of Subfield 

Variability 
Additional Processing 

Castro, TX NCCPI 

 Balanced to NASS production (Eq 2) 

o Manual adjustment of Cotton 

o Manual adjustment of Sorghum 

o Manual adjustment of Wheat 

Dyer, TN NCCPI 
 Transformed (Eq 3) 

 Balanced to NASS production (Eq 2) 

Hancock, OH SSURGO bu/ac yield  Balanced to NASS production (Eq 2) 

Sheridan, KS NCCPI 

 Transformed (Eq 3) 

 Balanced to NASS production (Eq 2) 

o Manual adjustment of Soybeans 

o Manual adjustment of Sorghum 

o Manual adjustment of Wheat 

 214 

In the case of Castro County, the CDL-raster was used to generate zonal statistics to the SSURGO polygons for 215 

acreage of each crop in each year. This provided reasonable results for all crops but cotton. Dryland cotton had been 216 

heavily damaged by drought in northern Texas for the past several years, resulting in widespread stand failure. For 217 

example, NASS reports 80,000 acres of cotton being planted in 2011 [53], but only 45,000 acres being harvested. 218 

No data source exists to inform what fields were harvested, and which were lost. As a result, all cotton producing 219 

areas would be assigned an artificially low yield to spread the burden of widespread stand failure. Because the 220 

failure was primarily due to drought, it was decided to use the custom field boundaries described earlier for acreage 221 

determination for cotton, as these polygons primarily represent irrigated fields. By doing this, the acreage estimation 222 

for cotton was slightly lower than harvested area reported by NASS [53] and the resulting correction factors resulted 223 

in yield estimates that were likely higher than reality, but this was a much safer assumption than slashing all fields 224 

due to dryland crop failure.  225 

Also for Castro County, the NASS data for wheat and sorghum were extremely limited and poor. Data on the area of 226 

land that was harvested, and yields, were very inconsistent and appear incomplete, resulting in unreasonable 227 

correction factors and extremely low yields. In lieu of sufficient data, the yield for wheat and sorghum were 228 

generalized to match an average yield of 60 bu/ac for wheat and 55 bu/ac for sorghum when projected onto the 229 
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distribution of NCCPI by acres within the fields of interest. This resulted in a correction factor of 137.3 for wheat 230 

and 125.9 for sorghum that was then multiplied by NCCPI to determine a yield estimate for all years.  231 

Sheridan County had multiple gaps in the annual NASS yield data. In the case of soybeans, an annual yield was only 232 

reported for 2012. As a result, the correction factor for that single year was applied to all five years of modeling. 233 

Sorghum yields were not available for 2011, 2013, and 2014, so the average of the 2010 and 2012 correction factors 234 

was applied to these three years. Finally, the 2013 winter wheat yield was missing, so the average of the other four 235 

year’s correction factors was applied to this year. 236 

Profitability 237 

Estimation of subfield profitability is critical for judging the opportunity for energy crops to be integrated into a 238 

landscape. There are two major components to this step: (1) operating costs and returns of crop management and 239 

production, and (2) estimation of land rental rates. The yield estimates for crops produced in each county were used 240 

in conjunction with University enterprise budgets for local crop production to determine annual net profit (Table 4).  241 

Commodity prices used for each of the budgets are shown in Table 5. Profitability is expected to be highly sensitive 242 

to crop price, so while the values in Table 5 were derived from national average commodity prices from 2010 to 243 

2014, the importance of these costs on the outcomes of the analyses should not be overlooked. 244 

Land rent is an important component of the fixed costs of crop production. In practice, unique parcels have rental 245 

rates that are determined based on the productivity and value of the land, such that highly productive fields 246 

command a premium, while low yielding fields may come with a lower rental rate. Unfortunately, data were not 247 

available to determine the specific value of all agricultural fields, and generalized assumptions had to be made. In 248 

the case of Hancock, OH, university rental surveys were associated with the productivity of agricultural operations. 249 

This allowed a more mature estimate of rental rates to be estimated based on the productivity of any given 250 

management unit within the county. The remaining four counties however did not provide such detailed information, 251 

and instead only a county-level rent was available and was generalized to all fields within the county, regardless of 252 

differences in productivity (Table 6). Though this assumption was overly simplistic and likely over-represented the 253 

value of unproductive fields and under-represented the value of highly productive fields, the generalization 254 

nevertheless allowed for simple, high-level insights regarding profitability to be made. Sensitivity analysis methods, 255 

out of the scope of this study, can be applied to determine the sensitivity of profitability to crop price, rent, yields, 256 

and area. 257 

Table 4 Source of crop budgets used to calculate production costs and profit for each county. 258 

County Crop Budget Source 

Castro, TX 
Texas A&M AgriLife Extension Agricultural Economics 2015 District 2 Texas 

Crop and Livestock Budgets 

Dyer, TN 
University of Tennessee Institute of Agriculture Field Crop Budgets for 2015 with 

Conventional Tillage and Non-Irrigated 

Hancock, OH 
Ohio State University Department of Agricultural, Environmental, and 

Development Economics 2015 Ohio Enterprise Budgets for Conservation Tillage 

Sheridan, KS Kansas State University AgManger.info Farm Management Guides—Crops 2015 
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 259 

Table 5 Commodity crop prices used for profitability analysis. 260 

Commodity Price Unit 

Corn 5 $/bu 

Soybean 11 $/bu 

Wheat 5.5 $/bu 

Cotton 0.8 $/lb 

Alfalfa 175 $/ton 

Sorghum (milo) 5 $/bu 

Non-Alfalfa Hay 125 $/ton 

 261 

 262 

Statistics of the 5-year average profitability are presented in Fig. 3 for all counties. The mean of the five-year 263 

average profitability of all counties are seen to be below zero; however, a significant fraction, though less than half, 264 

of subfields in all counties are seen to be profitable. Fig. 4 shows the spatial distribution of the five-year average 265 

profitability across the subfields in each county. Hancock and Sheridan Counties indicate significant number of 266 

subfields with profitability between -$100 and zero.  267 

Table 6 Land rental rates and sources for each county. In the case of Hancock and Fillmore counties, yield-specific 268 
functions for calculating land rent based on productivity were used. The four remaining counties use an average land 269 
rent for all fields. 270 

County Land Rent Source 

Castro, TX 78 $/ac NASS - 2010 to 2014 Average 

Dyer, TN 115 $/ac NASS - 2010 to 2014 Average 

Hancock, OH 
Yield-based 

function 
Ohio State University 2014-2015 Land Rent Survey 

Sheridan, KS 74 $/ac 
Kansas State University AgManager 2013/2014 Kansas County-

Level Cash Rents for Non-Irrigated Cropland 

 271 

Sustainability  272 

As presented in Bonner et al. [47], four of the five biomass (residue) removal methods developed by Muth and 273 

Bryden [8] were used for each combination of soil type and crop rotation. These are low residue harvest (0% 274 

removal), moderate residue harvest (35% removal), moderately high residue harvest (52% removal), and high 275 

residue harvest (83% removal). Bonner et al. [47] described two sets of sustainability criteria to protect the fields 276 

from excessive soil and carbon removal. The first, basic, criterion, representing standard NRCS guidelines, 277 

considered the biomass removal sustainable if (1) total soil erosion from wind and water was less than Ts, where Ts 278 

(dry Mg/ha/y) is the reported tolerable annual factor, specific for each SSURGO soil map unit; and (2) if soil 279 

organic matter depletion is low enough that a composite soil carbon index (SCI) was positive. The second, rigorous, 280 

criterion required that the total erosion was less than 1/2Ts for each SSURGO unit and the SCI composite factor and 281 
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SCI-OM organic sub-factor were both positive which ensured that the soil organic matter was either maintained or 282 

increased. The maximum sustainable residue removal for each subfield in a county in a year was estimated from 283 

LEAF-generated total biomass for the year from the highest of the four removal methods that met the basic or 284 

rigorous sustainability criterion.  285 

Energy Crop Harvesting 286 

Biomass removal rates for energy crop scenarios were calculated by the RUSLE2 model. RUSLE2 utilizes an 287 

internal crop growth model which estimates the amount of biomass growth in a season based on a user input target 288 

yield and weather data based on the location being modeled. A fraction of the simulated above ground biomass is 289 

then harvested based on a removal rate associated with the specified RUSLE2 harvest operation. Reported values 290 

represent the annual average biomass removal across the span of the simulated rotation. For example, for 291 

miscanthus, which has a planting to harvesting duration of 3 years, five life cycles are evaluated using the 2010-292 

2014 conditions in each of the five cycles. The LEAF framework provides a standard set of management practices 293 

for energy crops which are directly applied to estimate yields. As these crops are more resilient than the row crops, 294 

can very efficiently remove nutrients and carbon from the soil [15], require less application of additional nutrients or 295 

carbon (making them more sustainable than row crops), are harvested with significant ground cover remaining, and 296 

their harvesting results in significantly less impacts on environment and agricultural sustainability than the 297 

harvesting of row crops, the LEAF framework estimates their contribution to total biomass without imposing any 298 

sustainability criterion. 299 

Feedstock Cost Estimation  300 

The logistics cost for biomass under the basic and rigorous sustainability control scenarios were based on a three-301 

pass corn (i.e., conventional) feedstock supply system as proposed in the 2017 Design case for Biological 302 

Conversion of Sugars to Hydrocarbons in Jacobson et al. [54]. In this design, the corn is harvested and windrowed 303 

using a flail shredder and then baled into large (0.91X1.22X2.44-m) square bales.  The harvest system for energy 304 

crops was based on the system described in the same reference ([54]) for switchgrass; in which the crop is cut and 305 

conditioned using a self-propelled mower and baled into large (0.91X1.22X2.44-m) square bales.  The feedstock 306 

supply systems for each scenario included harvest and collection, transportation from field, as well as handling, 307 

storage and preprocessing at the conversion facility.  The costs were based on delivering 881,849 dry Mg/y to a 308 

conversion facility, without accounting for payment to the farmers or adjustments based on quality. The Biomass 309 

Logistics Model (BLM) was used to model feedstock logistics cost and energy consumption estimates for the 310 

proposed harvesting systems. The BLM incorporates information from a collection of databases that provide (1) 311 

engineering performance data for hundreds of equipment systems, (2) spatially explicit labor cost data sets, and (3) 312 

local tax and regulation data [55].   313 

In order to account for the variability that occurs within a county, a Monte Carlo analysis was used to calculate a 314 

range of logistics costs (except for harvesting) for the counties.  For each county, a thousand simulation runs were 315 

made in which the biomass yield was drawn from a triangular distribution based on the minimum, maximum, and 316 



12 
 

mean of the yield data. This approach was also used to develop the relationships between the costs and energy crop 317 

yield.  318 

The impact of the use of precision agriculture in conjunction with precision conservation on harvest efficiency and 319 

costs was assessed for sub-field management scenarios where energy crops were integrated into the production of 320 

row crops. The results are intended to be compared to conventional, mono-crop field management to assess 321 

practicality of implementing sub-field management strategies.  Geo-referenced crop production and field 322 

performance data were used in each county to simulate the harvest of the fields under conventional and sub-field 323 

management scenarios. The resulting harvesting cost information was combined with the crop establishment cost in 324 

both scenarios to form the basis of comparison. 325 

The simulation of the harvests considered only infield movement and not the additional costs associated with staging 326 

and setup of equipment. Field shape and characteristics were used to determine machine movement. For the 327 

conventional mono-crop case, simulation was carried out for only the fields that were capable of producing biomass 328 

under the identified sustainability criteria. Each subfield area that had a biomass removal limit greater than zero was 329 

selected and placed into the analysis data set. The sub-field areas that were placed into the analysis data set were 330 

then aggregated into field units based on adjacency and common land unit (CLU) identifier. The fields were then 331 

harvested based on user input values for machine width, percentage of overlap between machine passes, system cost 332 

per hour, harvest speed, and turning speed (Table 7).  Harvesting begins with two machine passes around the 333 

perimeter of the field to create headlands, in which the machines can turn during harvest. After the two perimeter 334 

passes, harvesting commences with the direction of travel parallel to the longest side of field. The distance traveled 335 

during harvesting and turning is collected and divided by the harvest speed and turning speed, respectively, to 336 

determine the total harvest time for the field. Total harvest time, field area and field yield are then used to define the 337 

production per hour. The cost per hour was then divided by the production per hour to derive the cost per Mg for the 338 

biomass feedstock.  339 

Table 7. Equipment Assumptions Used for Harvest Simulations 340 

 341 

The sub-field management cases were handled slightly differently, with the analysis being handled in two parts. The 342 

crop residue from the primary crop is handled as above with the added assumption that sub-field areas that have an 343 

associated negative profit are removed from the analysis and the analysis continues as previously described. The 344 

second part of the analysis dealt with the energy crop. For this analysis, the areas that are not profitable are the areas 345 

that are selected for the analysis. The energy crop analysis followed the same steps for simulating the harvest after 346 

Crop residue Energy crop

Harvester Baler Harvester Baler

Machine width (m) 9.14 8.33 5.79 8.33

Machine speed (km/h) 11.27 7.51 11.26 7.51

Macine efficiency (% ) 95 95 95 95

Turn speed (km/h) 5.63 5.63 5.63 4.00

Path overlap (% ) 4 4 4 4

Harvesting cost ($/h) 108.00 138.29 119.12 169.85
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the selection of subfield areas. The final step in the subfield analysis was to combine the results of the two analyses 347 

to estimate the overall harvesting cost and total biomass. 348 

The initial dataset for Sheridan County in Kansas contained information for 3,606 CLUs, and had 10,828 individual 349 

sub-field areas. Initial processing removed 1,279 of the sub-field areas that were unable to produce crop residue 350 

based on basic sustainability criteria. Sub-field areas that were less than 1 acre in size were also removed from 351 

further consideration from the perspective of operational practicality. The contiguous areas of the same CLU’s were 352 

then joined to form operational areas, resulting in 3,327 operational areas that were carried forward for analysis. The 353 

harvesting parameters used for the analysis were based on the equipment utilized in the 2017 Feedstock Design Case 354 

[54], for the harvest of multi-pass corn stover. Equipment speeds were taken from the University of Georgia’s 355 

Extension Engineering Handbook [56] and Iowa State University’s Estimating the Field Capacity of Farm Machines 356 

[57].   357 

Simulation of the harvest was carried out as described above, starting with the mowing and windrowing of the stover 358 

and then followed by baling. Since, bailing followed immediately behind the mowing and windrowing, it was 359 

assumed that the baler followed the same path as the harvesting equipment. However, if there was the need for an 360 

additional raking step, the path followed by the raking equipment was calculated separately and the baler followed 361 

the raking path instead. Upon completion of the analysis, the results from the operational areas were aggregated to 362 

the CLU, to provide the results at the farm level. The relationship between the costs and yield are presented in Figs. 363 

5 and 6 for crop residues and energy crops, respectively. Harvesting costs are separately presented in each figure 364 

from the other costs (preprocessing, transportation, and handling costs). Harvesting costs are clearly seen to be both 365 

a function of the yield and the specific subfield because the subfield geometries determine the direction of the 366 

harvesting pass and the time taken to harvest a field. The costs are generally seen to decrease with increasing yield 367 

for both residue and row crops. For a given yield, however, the cost can vary depending on the shape and size of the 368 

field. Harvesting costs for removing residues are seen to span a wider range than those for energy crops. The other 369 

costs are relatively stable with minor variations reflecting the inter-field differences in the transportation costs 370 

because of the differences in the number of trucks required to haul the biomass.  371 

Description of Analyses 372 

The following analyses were conducted using the LEAF framework and the methods described in the previous 373 

sections. 374 

1. A baseline assessment of row crop yields and profitability was conducted to determine grain productions and 375 

profitability for each of the 5 years (2010-2014) from every subfield analyzed in the four counties. For the 376 

baseline crop production, the 5-year average biomass (residue) that could be harvested from each subfield under 377 

minimal and rigorous sustainability criteria was then estimated for the four counties and their respective states. 378 

2. As the average 5-year profitability of each subfield for the grain production was known from the analyses in 379 

Step 1, non-profitable (5-year average profit <=0) subfields were identified and after accounting for the grain 380 

and biomass production lost from those subfields, the total county-specific grain and biomass production and 381 

profitability were estimated for the remaining subfields. 382 
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3. Energy crop yields were simulated for the five-year period on the non-profitable row-crop subfields. Total 383 

biomass which includes grain-crops residues from profitable subfields and energy crop from non-profitable 384 

row-crop subfields were then estimated.  385 

4. Finally, estimates of costs of harvesting, preprocessing, transportation, and handling were made for the biomass 386 

and energy crops assuming (1) all subfields are used for residual biomass and (2) a combination of profitable 387 

subfields for residual biomass and non-profitable subfields for energy crops are used. The assumptions and 388 

methods to assess feedstock costs were described in the previous section. The payments to farmers and 389 

adjustments based on quality are not included in the cost analyses as that data were not available for all states.  390 

Results  391 

Grain and Biomass Availability 392 

The LEAF framework was used to assess the amounts of biomass available under the basic and rigorous 393 

sustainability criteria described earlier. Fig. 7 presents the 5-year totals of grain and biomass availability in each 394 

county based on the grains grown and the rotation patterns in the subfields. Dyer and Sheridan Counties are 395 

representative of the minimum and maximum amounts of residual biomass harvests, respectively, under both basic 396 

and rigorous sustainability controls. Typically, less erodible soils would have less difference in the harvested 397 

amounts under basic and rigorous controls than highly erodible soils. The large variations in the differences of the 398 

amounts harvested under basic and rigorous controls from county to county suggests high variability in soil erosion 399 

and carbon retention capacities across counties. Both basic and rigorous sustainability controls placed very severe 400 

limitations on the amounts that could be harvested from Dyer County suggesting high potential for loss of nutrients 401 

and carbon from its soils should 100% removal of residue were to occur. Fig. 7 clearly shows that the amounts of 402 

biomass availability is significantly lower than the grain availability under both basic and rigorous sustainability 403 

controls.  404 

Profitability of Current Grain Production and Implications of Halting Production on Non-405 

Profitable Subfields 406 

Fig. 8 shows the number of subfields in each county that are profitable and the number of profitable subfields with 407 

biomass production and Fig. 9 shows the number of subfields in each county that are non-profitable and the number 408 

of non-profitable subfields with biomass production.  The number of non-profitable subfields are higher than the 409 

number of profitable subfields in all counties suggesting high potential for growing energy crops in all counties. 410 

Together, these figures suggest that sustainable production of residue-biomass cannot occur in all subfields, taking 411 

both profitable and non-profitable subfields into account; soil erodibility and carbon removal are important factors in 412 

determining the appropriate candidates for biomass removal, and higher protection against erosion and carbon loss 413 

would require less removal of biomass. As observed in both Figs. 4 and 9, Sheridan, KS, has the highest fraction of 414 

subfields that have 5-year average profits < $0 followed by Hancock, OH. These fractions have direct implications 415 

on the number of subfields that could be converted to energy crop production considering that production of residue-416 

biomass on these subfields already makes a potentially significant contribution to the total production. 417 
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Table 8 summarizes the impact of removing the non-profitable subfields from grain production altogether. As 418 

expected, Dyer, Hancock, and Sheridan counties lose the most acreage when grain crop production is halted in non-419 

profitable subfields. Both grain and biomass productions decrease significantly in these counties. However, for each 420 

county, the removal of these subfields results in positive and higher total 5-year profit simply by avoidance of non-421 

profitable grain production. The adjusted average profit also becomes positive or higher for all counties. However, 422 

the significant decrease in biomass would mean that reaching the BETO goal becomes more difficult under this 423 

option. A better solution is to use these subfields for bioenergy crop production if associated feedstock costs are 424 

acceptable to the bioenergy industry. Implications of using these subfields for energy crops are addressed in the next 425 

section. 426 

Table 8 Impact of removing non-profitable subfields from grain production. 427 

County 

Name 

Net Grain 

Production 

(MMT) 

Net Biomass 

Production with 

Control of Carbon 

and Soil Losses 

(MMT)  

% Loss 

in Acres 

Profit from 

Grains ($M) 

  

Average Profit from 

Grains ($/acre) 

  

    
Basic 

Control 

Rigorous 

Control   Baseline Adjusted Baseline Adjusted 

Castro, TX 2.58 0.89 0.81 27 $25.54 $44.21 $48.32 $83.64 

Dyer, TN 0.97 0.02 0.00 50 -$23.55 $66.37 -$25.54 $72.00 

Hancock, OH 1.12 0.25 0.15 67 -$18.20 $16.82 -$15.01 $13.87 

Sheridan, KS 0.26 0.12 0.08 94 -$115.93 $7.61 -$65.39 $4.29 

MMT represents million dry metric tons and $M represents $1 million. 428 
 429 

Implications of Replacing Non-Profitable Subfields with Energy Crops 430 

Estimates of energy crop production, according to Table 2, on non-profitable subfields are presented in Table 8, 431 

along with the baseline (current) grain and biomass production estimates, and in Fig. 10. Decrease in overall grain 432 

and biomass production for the 5-year period is partially compensated by energy crop production. As expected, the 433 

increase in total biomass (biomass from grain residues + energy crops) is minimal for Castro County because it has 434 

the least non-profitable fraction of land available for energy crop production (Figs. 4 and 9). In Castro County, most 435 

of the biomass contribution occurs from profitable subfields with very low production of energy crops on non-436 

profitable subfields indicating that the non-profitable subfields in the county are also non-productive. As the LEAF 437 

framework takes into account the type of energy crop grown, the climate, and soil properties to estimate the energy 438 

crop production, it is apparent that certain counties have the capacity to grow more energy crops than others. The 439 

energy crop production in Dyer, Hancock, and Sheridan Counties represent reasonably high multiples of the grain 440 

production and is considerably higher than the residue biomass production. While more energy crop is produced 441 

using basic erosion control measures, the %-gain in total biomass production is typically higher under rigorous 442 

sustainability controls because we start off with lower biomass production under rigorous sustainability controls and 443 

baseline conditions. Energy crop production for both switchgrass and miscanthus, even on non-profitable grain 444 

fields, is significantly higher than the residue biomass production. Roughly 90% of subfields in Sheridan County 445 

and 72% of subfields in Hancock County are non-profitable with respect to grain production. Therefore, large 446 
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potentials exist in these counties for the production of energy crops. An average subfield size in Hancock County is 5.6 acres whereas it is 33 acres in Sheridan 447 

County, and there are 31,367 non-profitable subfields in Hancock County against 9,825 in Sheridan County. These factors and the individual, detailed farm-level 448 

assessment account for the significantly higher production and yields of miscanthus in Sheridan County over Hancock, and lower grain production in Sheridan 449 

County. Table 9 also provides the yields of residual biomass and energy crops in the four counties. For miscanthus, Mitchell et al. [15] report values between 2.5 450 

to 17 metric tons/ha/y in South and Southeastern regions where the yield potentials are low and >30 metric tons/ha/y in Illinois which has a high yield potential 451 

for giant miscanthus. Considering that non-profitable sub-fields were evaluated for growing energy crops in this study, the yields in Table 9 for miscanthus are in 452 

line with the reported values. The switchgrass yield for Dyer Count in Table 9 lies in the lower end of the yields of between 5.2 and 11 metric tons/ha/y reported 453 

in [15], consistent with the low productivity of the non-profitable subfields. Table 9 also shows the potential increase in total biomass produced by the integration 454 

of energy crops into the agricultural landscape over current baseline condition. Factors between 0.8 and 18.7 under the basic and between 0.8 and 21.2 under 455 

rigorous sustainability criteria, respectively, indicate significant potential for increased biomass production even on counties with less-productive soils. 456 

 457 

Table 9 Impact of removing non-profitable subfields from grain production. All production numbers are for the 5-year period between 2010 and 2014. In 458 
Columns 3 and 4, biomass is available on all subfields under baseline conditions while, in Columns 6 and 7, biomass is available only from profitable subfields 459 
and the non-profitable subfields produce energy crops shown in Column 8. 460 

County 

Name 

 Biomass with Control 

of Carbon and Soil 

Losses (MMT) 

 Biomass with 

Control of 

Carbon and Soil 

Losses (MMT) 

Energy  

Crop 

Production 

(MMT) 

Fold-increase in total 

biomass from energy 

crop integration 

Average Yield (MT/ha/y) 

 Grains 

(MMT) Basic 

Control 

Rigorous 

Control 

Grains 

(MMT) Basic 

Control 

Rigorous 

Control 

 

Basic 

Control 

Rigorous 

Control 

Biomass, 

Basic 

Control 

Biomass, 

Rigorous 

Control 

Energy 

Crops 

Castro, TX 

(Sorghum) 
3.86 1.14 1.03 2.58 0.89 0.81 0 0.8 0.8 7.57 7.21 0.00 

Dyer, TN 

(Switchgrass) 
1.45 0.03 0.00 0.97 0.02 0.00 0.54 18.7 N/A 1.65 0.00 5.63 

Hancock, OH 

(Miscanthus) 
2.87 0.90 0.43 1.12 0.25 0.15 2.15 2.7 5.3 3.53 4.60 9.51 

Sheridan, KS 

(Miscanthus) 
2.56 1.45 0.28 0.26 0.12 0.08 5.85 4.1 21.2 3.48 3.63 9.72 

MMT represents million dry metric tons and MT represents dry metric tons. 461 
 462 

 463 
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Estimates of Feedstock Logistics Cost 

Unlike grain production, it is currently not possible to evaluate profits from biomass and energy crop production in a 

realistic manner as the markets for feedstock have not been established because trade volumes are low. However, 

because of advances made in the estimation of the costs of biomass harvesting and collection, handling, 

transportation, and preprocessing, it is possible to estimate them and get an appreciation of the state of science viz 

the BETO goal of $84/dry short ton in 2014$ by 2017 [2]. As discussed in the Materials and Methods Section, the 

harvesting costs were estimated at the farmer (CLU) level rather than at subfield-level, and subfields less than 1 acre 

in size within a CLU were not included for the estimation of either energy crop amounts or its logistics cost. Costs 

of biomass production from all of the currently operational subfields are presented in Table 10 under the basic and 

rigorous sustainability controls. It should be noted that the harvesting costs do not reflect the costs of staging 

equipment for harvesting operations because the subfields are scattered across the landscapes. The scattered 

distribution of subfields makes time for equipment moving and set-up a significant part of the harvesting costs and 

the reported costs in Table 10 would therefore represent an underestimation. 

Using the general trends observed in Figs. 5 and 6 that the average harvesting costs, and therefore, the total costs are 

inversely proportional to the biomass yield, Table 10 indicates that because Castro, Hancock, and Sheridan Counties 

contain the higher-yield subfields, they are likely to have lower overall average logistics cost for the biomass 

production under both basic and rigorous sustainability controls. It should be noted that the average residue biomass 

yield in Castro County is considerably higher than from the other counties (Table 9) although the range of yields in 

the county varies from 0.92 to 10.2 dry metric tons/ha. Compared to other counties, Dyer contains both low-yielding 

and lower acreage subfields, making its costs higher. For Sheridan County, the average payment to farmer results in 

an add-on of upwards of $30.95/dry metric ton to the total cost and result in feedstock costs of upwards of $83.28 

and $81.98 per dry metric ton under basic and rigorous controls, respectively. The compensating effects of lower 

yields and higher costs on total cost, is apparent in Table 10; i.e., the lower yields from rigorous sustainability 

controls comes at a higher cost resulting in a compensatory effect on the costs for the two criteria. 
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Table 10 Estimated average costs of feedstock supply-chain components for biomass production in existing subfields (in 2014$). 

County 
Biomass Production Costs with Basic Controls ($/MT) Biomass Production Costs with Rigorous Controls ($/MT) 

Harvesting Preprocessing Transportation Handling Total Harvesting Preprocessing Transportation Handling Total 

Castro, TX $6.35 $22.24 $8.12 $1.82 $38.52 $6.64 $22.21 $8.17 $1.81 $38.84 

Dyer, TN $37.72 $22.23 $11.31 $1.81 $73.08 $0.00 $0.00 $0.00 $0.00 $0.00 

Hancock, OH $17.41 $22.25 $9.47 $1.82 $50.95 $14.02 $22.25 $9.03 $1.82 $47.12 

Sheridan, KS $18.13 $22.25 $10.13 $1.82 $52.33 $17.05 $22.25 $9.92 $1.82 $51.03 

MT represents dry metric ton. 
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Table 11 provides the estimated logistics costs for the scenario depicted in Table 9 where energy crop is produced in 

non-profitable grain-subfields and residual biomass is produced in profitable grain-subfields. Significant changes in 

costs occur as a result of harvesting energy crops in all counties except Castro, where the changes from Table 10 

merely reflect the zero residue-harvesting from non-profitable subfields (i.e., does not reflect energy crop 

production). The reduction in average total cost is particularly significant for Dyer County where the energy crops 

constitutes the majority of biomass produced. The harvesting and total costs in all three counties with energy crop 

production go down as a result of significant energy crop production at higher yields. For Sheridan County in 

Kansas, the total feedstock cost with the grower payment included reduced further from the baseline scenario to 

upwards of $76.87 and $76.85 per dry metric ton of biomass, considerably lower than the BETO goal of $84/dry 

short ton (= $92.6/dry metric ton) in 2017 at 2014$ [2]. It should also be noted from Table 11 that energy crop yields 

are the lowest in Dyer County, leading to the higher logistics costs there than the other counties. The reasons for the 

lower costs in Sheridan County over Hancock County have already been partially explained in the discussion on 

Table 9. It should also be noted that because of the significantly larger quantities of energy crops being produced in 

Hancock and Sheridan Counties, their transportation costs actually go up over the baseline values even though other 

costs go down resulting in higher average total cost for Hancock County over the baseline value. An illustrative 

comparison of the estimated average total feedstock logistics cost in 2014$ is provided in Fig. 11, which combine 

the results from Tables 10 and 11.   
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Table 11 Estimated average costs of feedstock supply-chain components for energy crop production from non-profitable grain-subfields and biomass production from 

profitable grain-subfields (in 2014$). 

County, 

Energy Crop 

Total Biomass (including Energy Crops) Production 

Costs with Basic Controls ($/MT) 

Total Biomass (including energy  crops) Production Costs 

with Rigorous Controls ($/MT) 
Average Yield (MT/ha) 

Harvesting 

Pre-

processing 

Transpo-

rtation Handling Total Harvesting 

Pre-

processing 

Transpo-

rtation Handling Total 

Biomass, 

Basic 

Control 

Biomass, 

Rigorous 

Control 

Energy 

Crops 

Castro, TX, 

Sorghum 
$6.85 $22.24 $8.05 $1.82 $38.96 $7.14 $22.22 $8.10 $1.81 $39.27 7.57 7.21 0.00 

Dyer, TN, 

Switchgrass 
$23.49 $19.99 $15.62 $1.81 $60.91 $22.82 $19.91 $15.78 $1.81 $60.32 1.65 0.00 5.63 

Hancock, OH, 

Miscanthus 
$14.31 $20.18 $14.58 $1.82 $50.89 $13.44 $20.09 $14.79 $1.82 $50.13 3.53 4.60 9.51 

Sheridan, KS, 

Miscanthus 
$9.05 $19.99 $15.07 $1.82 $45.92 $9.00 $19.97 $15.11 $1.82 $45.90 3.48 3.63 9.72 

MT represents dry metric tons. 
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Reduction in Food Production and Revisiting the Bioenergy Production  

Table 9 also presents the reduction in grain production from production of energy crops on non-profitable subfields. 

These reductions are summarized in Fig. 12 and show that Sheridan, KS, and Hancock, OH, will have significant 

reductions in grain production that could potentially affect the grain industry. In these counties, because of the 

availability of large fractions of non-profitable subfields, the production of bioenergy crops on all of them would 

result in considerable reduction in total grain production in those area.  While it is true that replacing the subfields 

with bioenergy crops would cause an overall reduction in national grain production, the results from the two 

mentioned counties would not be representative of the effect on the entire grain production system, since it is likely 

that an area with high proportions of unprofitable fields would contribute highly to the total quantity of grain 

produced.  However, the impact of replacing grain crops with dedicated bioenergy crops on national grain 

availability is an important issue and will be investigated further as our research continues.  

The food production issue also compels one to revisit the high variability observed in Figs. 5 and 6 in the harvesting 

costs; each point in these figures being representative of a farm (CLU), some of the harvesting costs can be seen to 

be prohibitively high. The harvesting costs are plotted as histograms in Fig. 13 and it can be seen that there is a 

significantly high number of CLUs in which the harvesting costs are higher than the average costs reported in Tables 

10 and 11 and Fig. 11. 

Fig. 13 also shows that there are CLUs that contain profitable (for grain production) subfields in which harvesting of 

residue-biomass is cost-prohibitive. Ability to conduct CLU-level cost analysis permits the culling of low-cost CLUs 

from the list of profitable and non-profitable sub-fields for the harvest of residue and energy crops, respectively. 

This process is summarized for Dyer County in Fig. 14. Selecting maximum allowable harvesting cost and 

minimum permissible yields (the values shown in Fig. 14 are for illustration purposes only), it is possible to carve 

out the green quadrants containing CLUs on which residue and energy crops can be produced at acceptable 

harvesting costs. While it would lower the amount of total biomass produced, it could also reduce the impact on 

food production, if the results of the two counties are assumed to be representative of the national-scale behavior, 

considerably. As the study is extended to more counties and states, the impact on food production as well as the 

importance of variability in biomass harvesting costs will be included as essential components of the integrated 

landscape management. 

Conclusions 
 

The analyses presented in this document shows that biomass can be produced either (1) by harvesting biomass from 

existing subfields where grains are grown or (2) by harvesting biomass on profitable subfields while growing and 

harvesting energy crops on non-profitable subfields. Both alternatives result in significant increases in biomass with 

the latter alternative producing more total biomass than the former. As the biomass prices are still controlled by a 

sparsely distributed, experimental, and unestablished market conditions, it is difficult to estimate the profitability of 

either alternatives. However, the analysis of logistics costs, particularly the analysis of precision harvesting to 

collect residues and energy crops, clearly indicates that addition of energy crops actually results in a significant 

decrease in average total costs while also increasing the production of total biomass. The analysis presented here 
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also points out the influence of yields, acreage and the yield-cost relationship in determining the final unit cost of 

feedstock production. Another important finding that emerges from this analysis is that for increased-quantity and 

lower-cost production of biomass, it is important to grow energy crops as well.  

Among the four counties studied, Sheridan and Kansas Counties, with the higher fractions of non-profitable fields, 

present the highest potential for integration of energy crops in row-crop fields and biomass production. Therefore, 

these and other counties with large fractions of non-profitable row crop fields, are most likely to benefit from the 

changes in management practices and land use presented in this study. Subfield-row-crop profitability constitutes the 

single-most important factor in the determination of energy crop integration; therefore, it is important to verify and 

validate row-crop profitability using real data from growers and to understand the key parameters that contribute 

most to its variability so that energy crop integration is based on estimates of profitability that are both reliable and 

less uncertain.  

When focus is turned to the variability in harvesting cost at the CLU-level, a major contributor to the total logistics 

cost, it is immediately apparent that it is not profitable (and therefore, not sustainable) to harvest residual biomass 

from certain profitable subfields and energy crops from certain non-profitable subfields. Harvesting costs could be 

further improved and made more realistic by including equipment moving and staging costs and therefore, the 

reported harvesting costs, while being state-of-the-art, may not be truly representative. Because of the scattered 

locations of the subfields, it is a major challenge to optimize this process. This study provides a method to isolate 

subfields and CLUs on which residual biomass and energy crops can be produced in a sustainable manner at lower 

cost. While the analysis on the total biomass production from the application of this method was not conducted as 

part of the current research as it was out of the current scope, it does provide the promise for increased biomass 

production with limited impact on food production. The grain-profitability-based identification of CLUs for residue 

and energy crop production and the variability-based culling of sustainable CLUs provide a systematic approach to 

investigate the quantity and cost of biomass production in the US.  
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FIGURES 

 

                      

 

Fig 1 Comparison of the Common Land Unit (CLU) boundaries to actual management areas in Castro County, TX 

(left). Field boundaries created by converting the Cropland Data Layer land cover into polygons based on similar 5-

year rotations (right). 
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Fig 2 Fields meeting analysis criteria in each of the four counties. 
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Fig 3 Statistics of the 5-year average profitability in the four counties analyzed. The top and bottom of the whiskers 

for each county represent the estimated maximum and minimum grain profitability. The intersection of the yellow 

and green boxes, represents the mean grain profitability. Finally, the top of the green boxes and the bottom of the 

yellow boxes represent “mean + two standard deviations” and “mean – two standard deviations”, respectively. For 

Dyer and Sheridan Counties, the minimum profitability values are higher than “mean – two standard deviations” 

suggesting the skewed nature of the estimated profitability distribution. 
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Fig 4 Five-year average profitability of field crop production in each of the four study counties. 
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Fig 5 Total cost (sum of harvesting, handling, transportation, and preprocessing costs and not including payments 

to farmers) as a function of biomass or energy crop yield (at 2014 $).  
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Fig 6 Total cost (sum of harvesting, handling, transportation, and preprocessing costs and not including payments 

to farmers) as a function of biomass or energy crop yield (at 2014 $).  
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Fig 7 Availability of grains and biomass from the four counties analyzed between 2010 and 2014. 

 

 

 

 

 
Fig 8 Number of profitable subfields and profitable subfields producing biomass within each county. 
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Fig 9 Number of non-profitable subfields and non-profitable subfields producing biomass within each county. 

 

 

 

 

Fig 10 Availability of grains and total biomass from the four counties analyzed between 2010 and 2014 after 

replacing non-profitable subfields with energy crops. 
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Fig 11 Estimated total feedstock costs in 2014$ for the scenarios considered in this study. 

 

 

 

 

 

 

 
Fig 12 Reduction in grain production as a result of replacing non-profitable grain subfields with energy crops. 
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Fig 13 Histograms of cost for harvesting residues and energy crops on CLUs in Dyer County, TN. 
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Fig 14 CLUs with acceptable harvesting cost and yields for residue and energy crop harvesting. 
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